WALKER RIVER PAIUTE TRIBE

CLARIFICATION AND AMENDMENTS TO EXHIBIT 355

EXHIBIT 356

Clarifications and Amendments to Exhibit 355

Supplemental Data Supporting the Walker River Paiute Tribe's Position in Relation to Its Proposed Agreement with the National Fish and Wildlife Foundation MOU Exhibit 1 - Program Water Conveyance Accounting Protocol for Pending Application 80700

June 6, 2013

Prepared by:

Dwight L Smith, PE, PG, WRS

WRPT 'S EXHIBITS 356

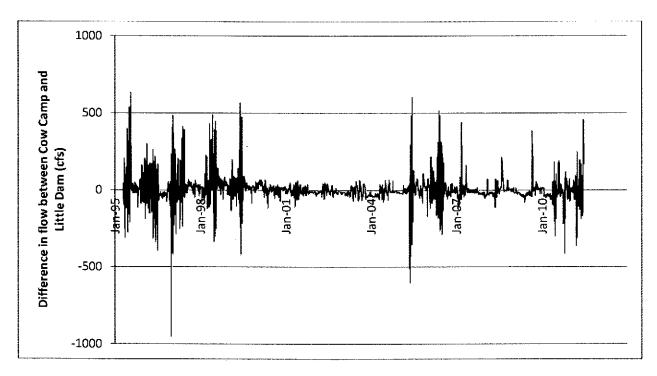
This document and Exhibit 355 have been prepared solely on behalf of the Walker River Paiute Tribe.

Clarification on intent of Exhibit 355

In communication with the National Fish and Wildlife Foundation (NFWF), the applicant for Application 80700, it became clear that the primary intent of the Walker River Paiute Tribe's (Tribe) Exhibit 355 submittal was not made clear in the document. Additionally, two errors in data presentation were brought to our attention. This submittal offers clarification on the intent of Exhibit 355, and an amended Table 4 and Figure 10 to correct identified errors.

Exhibit 355, as indicated on the cover page, is submitted on behalf of the Walker River Paiute Tribe in support of the draft Accounting Protocol that has been developed through the combined efforts of the Tribe, NFWF and the Bureau of Indian Affairs (BIA). The draft Accounting Protocol is the key technical document for a Conveyance Agreement, yet to be executed by the parties, but referenced in the NFWF's Application 80700.

The primary intent of the Exhibit 355 is to provide data and basic interpretations in support of the accounting approach that has been presented to the Nevada State Engineer for the forthcoming proceedings. The draft Accounting Protocol represents a carefully considered and documented set of spreadsheet-compatible equations, with multiple logic paths depending on a variety of possible physical conditions that may be in place for measuring stream flows in the lower Walker River. The historic stream flow gage data and basic interpretations of the data are not specifically introduced in the Accounting Protocol documentation, but are provided in Exhibit 355 so that the Tribe may adequately answer and support the rationale underlying the draft Accounting Protocol.


Specifically, the lower Walker River is characterized as a hydrologic system that contains a range of variability in losing and at times gaining conditions. Losses and gains are interpreted to be a function of a number of variables, most notably, the stage and magnitude of flow in the river, whether the stage is rising or falling, and the season of the year. Due to the existing hydrologic system variability, several simplified accounting approaches and assumptions that conceivably could be used in the conveyance accounting were dismissed in favor of a daily (real time) accounting approach that has been filed as Exhibit 354.

The draft Accounting Protocol is supported by the Tribe as a method that has the ability to accurately account for the water flowing onto and through the Walker River Indian Reservation. With this accuracy and transparency in the accounting, the Tribe feels that the potential for conflict between parties is minimized under the draft Accounting Protocol, and reduces the potential for future harm to the Tribe and the Allottees that depend on water diversions at Little Dam. Additionally, the daily accounting protocol will provide necessary quantifications for operation of Weber Reservoir by the BIA for dual release of NFWF water and the Tribe's irrigation water, plus other natural flows in the river, when present.

Amended Figure 10 (Exhibit 355, p. 14)

Replacement Paragraph 3:

Over the period of record, this segment exhibits both gaining and losing conditions (Figure 10). Weber Reservoir operations affect the daily losses or gain observed from between the gages. Also, it should be noted that the inaccuracy of high flow measurements at the Cow Camp gage, due to bypass flow conditions, may account for apparent seasonal gains in flow during wet years such as 1995-99 and 2006. In dry years, there appears to be a near neutral to moderate loss in this reach. More detailed examination of the data may be possible, but the general point of variability in conditions is illustrated.

Amended Figure 10 – Difference in Daily Flows between Cow Camp and Little Dam 1995 to 2011 Period of Record (including diversions from Canals 1 and 2)

Amended Table 4 and Corresponding Text (Exhibit 355, p. 18)

Replacement Paragraph 1:

Over the 17 year period from 1995 to 2011 during which there have been gages in concurrent operation at Wabuska and Little Dam, the loss in river flow between Wabuska and Little Dam averages 18.9% annually during the irrigation season, with a standard deviation of 15.3% (Table 4). During low flow years, the loss in flow between Wabuska and Little Dam increases to 26.8%, with a standard deviation of 16.2%. Weber Reservoir releases of prior stored water during the irrigation season are included in these values (not factored out). When accounting for the net storage depletion over the irrigation season, the average flow difference increases to 27.5%. Table 4 is intended to document the presence and degree of losing stream flow conditions in the lower Walker River and be illustrative of the range of variability observed annually in the flow system. A volume-weighted average value should be utilized in place of the values presented above for any long-term average volumetric determinations (not presented in Exhibit 355).

Amended Table 4 - Irrigation Season Difference in the Walker River Flow at Little Dam and Wabuska Gages

1995 - 2011 (corrected values in blue, columns 7 and 8 added)

141	(2)	(6)	(V)	(4)	(5)	(2)	(8)
7	j	Wabuska Flow	Little Dam Flow	Difference	Little Dam Flow	Weber Reservoir	Adjusted Little
Year	Wabuska Total	between April	between April	between Little	Percent of	Storage Depletion	Dam Flow Percent
	Annual Flow (AF)*	15 to October 15th (AF)*	(AF)**	Irrigation Season	during the	and October 15	during the
				Flow	Irrigation Season Flow	(AF)	Irrigation Season Flow
1995	287,252	252,927	230,910	22,017	91.3%	-2,110	90.46%
1996	220,730	124,834	102,769	22,065	82.3%	-6,180	77.37%
1997	352,655	149,204	138,361	10,843	92,7%	-2,960	90.75%
1998	275,722	194,617	193,791	826	%9'66	-4,030	97.50%
1999	151,515	95,963	95,184	6//	99.2%	-5,450	93.51%
2000	53,024	21,006	14,812	6,194	70.5%	-1,668	62.57%
2001	30,967	17,496	10,070	7,426	57.6%	-874	52.56%
2002	23,422	14,697	8,756	5,941	29.6%	-2,849	40.19%
2003	30,826	19,322	11,479	7,843	59.4%	-1,250	52.94%
2004	31,158	18,330	14,339	3,991	78.2%	-4,580	53.24%
2005	150,581	130,050	111,212	18,838	85.5%	-2,000	83.98%
2006	305,964	228,316	218,034	10,282	95.5%	-110	95.45%
2007	32,357	12,223	9,273	2,950	75.9%	-1,650	62.37%
2008	25,181	15,385	16,486	-1,101	107.2%	-6,380	62.69%
2009	24,523	12,716	9,821	2,895	77.2%	-2,060	61.03%
2010	62,291	37,554	24,215	13,339	64.5%	2,110	70.10%
2011	247,873	171,110	141,000	30,110	82.4%	-630	82.03%
Average					81.1%		72.46%
Std. Dev.					15.3%		17.28%
Ave. Low Flow					73.2%		56.32%
Std. Dev.					16.2%		8.29%
		;	7		7000 7 17 7 7		

^{*} Conversion from units of flow in average daily cubic feet per second (cfs) to daily acre-feet made using: 1 cfs/day = 1.9836 acre-feet/day.
** Total flow at Little Dam inclusive of Canal 1 and 2 diversions, not adjusted to remove Weber Reservoir release volume. Lateral 2A Siphon gage record substituted for periods of missing record at the Little Dam gage (2001-2004).